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Multiple imputation: a primer

Joseph L Schafer Department of Statistics, The Pennsylvania State University, University
Park, Pennsylvania, USA

In recent years, multiple imputation has emerged as a convenient and flexible paradigm for analysing
data with missing values. Essential features of multiple imputation are reviewed, with answers to
frequently asked questions about using the method in practice.

1 Introduction

Imputation, the practice of ‘filling in’ missing data with plausible values, has long
been recognized as an attractive approach to analysing incomplete data. For decades,
survey statisticians have been imputing large databases by often elaborate means.!
From an operational standpoint, imputation solves the missing-data problem at the
outset, enabling the analyst to proceed without further hindrance. From a statistical
standpoint, however, a naive or unprincipled imputation method may create more
problems than it solves, distorting estimates, standard errors and hypothesis tests, as
documented by Little and Rubin? and others.

The question of how to obtain valid inferences from imputed data was addressed by
Rubin® in his book on multiple imputation (MI). MI is a Monte Carlo technique in
which the missing values are replaced by m > 1 simulated versions, where m is
typically small (say, 3-10). In Rubin’s method for ‘repeated imputation’ inference,
each of the simulated complete datasets is analysed by standard methods, and the
results are later combined to produce estimates and confidence intervals that
incorporate missing-data uncertainty. Rubin’s text addresses potential uses of MI
primarily for large public-use data files from sample surveys and censuses. With the
advent of new computational methods and software for creating MI’s, however, the
technique has become increasingly attractive for researchers in the biomedical,
behavioural, and social sciences whose investigations are hindered by missing data.
These methods are documented in a recent book by Schafer* on incomplete
multivariate data.

MI is not the only principled method for handling missing values, nor is it
necessarily the best for any given problem. In some cases, good estimates can be
obtained through a weighted estimation procedure (see, e.g. Little’ and Robins et al.®).
In fully parametric models, maximum-likelihood estimates can often be calculated
directly from the incomplete data by specialized numerical methods, such as the EM
algorithm.” The estimates obtained through such procedures may be somewhat more
efficient than those from MI, because they involve no simulation. Given sufficient time
and resources, one could perhaps derive a better statistical procedure than MI for any
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particular problem. In real-life applications, however, where missing data are a
nuisance rather than a major focus of scientific enquiry, a readily available, approxi-
mate solution with good properties can be preferable to one that is more efficient but
problem-specific and complicated to implement. MI is not the only tool available, but
it is a handy one and a valuable addition to any data analyst’s toolkit.

In the remainder of this article I provide an overview of the MI paradigm and
discuss practical issues in the form of answers to frequently asked questions.
Techniques and software for creating MIs are reviewed, followed by an example of MI
in a simple categorical data problem.

2 The MI paradigm

Rubin® presented the following method for repeated-imputation inference. Let O
denote a generic scalar quantity to be estimated, such as a mean, correlation,
regression coefficient, or odds ratio. Let Y denote the intended data, part of which is
observed (Y,) and part of which is missing (Yy). Let O = O(Yp, Yiis) denote the
statistic that would be used to estimate Q if complete data were available, and let
U = U(Yops, Ymis) be its squared standard error. We must assume that with complete
data, tests and intervals based on the normal approximation

(0-0)/VU ~ N(0,1) (2.1)

would be appropriate. For this reason, it may be helpful to transform the estimand to a
scale for which (2.1) works well, e.g. by taking the log of an odds ratio. A method
appropriate for small-sample problems where (2.1) is replaced by a Student’s ¢-
distribution is discussed by Barnard and Rubin.?

In the absence of Y, sup}aose that we have m > 1 independent simulated versions
or imputations Y Y™ From these we calculate the imputed-data estimates

mis? "t T omis C

0 = Q(ngs,erﬁz) along with their estimated variances U = U(Yy, Y, /),
£ =1,...,m. The overall estimate of Q is simply the average
0 =m'13 00 (22)

To obtain a stlanda;d error gor 0, one must calculate the between-imputation variance
B=(m—-1)" (0¥ —Q)* and the within-imputation variance U = m~ !> U®,
The estimated total variance is

T=0+m)B+U (2.3)
and tests and confidence intervals are based on a Student’s t-approximation
©-QNT ~1, 24)
with degrees of freedom
— 2
U
v=(m-1) [1 + g +m_1)B]
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Notice that if Y, carried no information about O, then the imputed-data estimates
0 would be identical and T would reduce to U. Therefore, r = (1 +m )B/U
measures the relative increase in variance due to missing data, and the rate of missing
information in the system is approximately A =r/(1 +r). A more refined estimate of
this fraction, obtained by comparing the spread of (2.1) to (2.4), is

r+2/(v+3)
N 147

Inferential questions that cannot be cast in terms of a one-dimensional estimand (e.g.
goodness-of-fit tests) can be handled through multivariate generalizations of this
rule.””

The great virtues of MI are its simplicity and its generality. The user may analyse
the data by virtually any technique that would be appropriate if the data were
complete. The validity of the method, however, hinges on how the imputations
YT%, .. .,YZZ) were generated. Clearly it is not possible to obtain valid inferences in
general if imputations are created arbitrarily. The imputations should, on average,
give reasonable predictions for the missing data, and the variability among them must
reflect an appropriate degree of uncertainty. Rubin® provides technical conditions
under which repeated-imputation method leads to frequency-valid answers. An
imputation method which satisfies these conditions is said to be ‘proper’. These
conditions, like many frequentist criteria, are useful for evaluating the properties of a
given method but provide little guidance for one seeking to create such a method in
practice. For this reason, Rubin recommends that imputations be created through
Bayesian arguments: specify a parametric model for the complete data (and, if
necessary, a model for the mechanism by which data become missing), apply a prior
distribution to the unknown model parameters, and simulate m independent draws
from the conditional distribution of Y, given Y, by Bayes’ theorem. In simple
problems, the computations necessary for creating MI’s can be performed explicitly
through formulas. In nontrivial applications, however, special computational
techniques such as Markov chain Monte Carlo, to be described in Section 4, must
be applied.

When imputations are created under Bayesian arguments, Rubin’s repeated-
imputation method has a natural interpretation as an approximate Bayesian inference
for O based on the observed data. Suppose O and U can be regarded as an approximate
complete-data posterior mean and variance for Q, O = E(Q | Yo, Yiis) and U =
V(O | Yobs, Ymis). Then (2.2) approximates the actual posterior mean

E(Q | Yobs) = E(Q | Yobs)

and (2.3) approximates the posterior variance

V(Q ’ Yobs) = V(Q | Yobs) +E(U ’ Yobs)

The term m~'B in (2.3) and the use of ¢, rather than a normal distribution widen the
resulting interval estimates to account for simulation error incurred by using m < co.
Unless the fraction of missing information A is unduly large, the widening effect is not
substantial, and MI inferences are quite efficient even when m is small.

A (2.5)
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A key feature of MI is that the imputation phase is operationally distinct from
subsequent analyses. The imputations Yfm-s, ce Y,(,Z? may be created by one person or
organization and the analyses carried out by another. This raises the possibility that
the statistical model or assumptions used to create the imputed datasets may be
somehow incompatible with those used to analyse them. The behaviour of repeated-
imputation inference when the imputer’s and analyst’s models differ has been
investigated by Fay,!”> Meng'? and Rubin.!* When the imputer’s model is more general
(i.e. makes fewer assumptions) than the analyst’s, then MI leads to valid inferences
with perhaps some loss of power, because the additional generality may add extra
variation among the imputes Yy(”lis), e Ymrfs). When the imputer makes more
assumptions than the analyst — and the extra assumptions are plausible — then the
MI estimate O may become more precise than any estimate derived from the observed
data and analyst’s model alone, a property that Rubin'* calls ‘superefficiency’. In such
cases, MI intervals tend to be narrower than intervals derived purely from the analyst’s
model, and they also tend to be conservative with higher-than-nominal coverage
probability, as shown by the theoretical results of Meng.!?

The only serious danger of inconsistency arises when the imputer makes more
assumptions than the analyst and these additional assumptions are unwarranted. For
example, consider a situation where a variable is imputed under a no-interactions
regression model and the analyst subsequently looks for evidence of interactions; if
interactions are present, then the MI estimates of them will be biased toward null
values. In practice, this means that an imputation model should reasonably preserve
those distributional features (e.g. associations) that will be the subject of future
analyses. Above all, the processes of imputation and analysis should be guided by
common-sense. For example, suppose that variables with skewed, truncated, or heavy-
tailed distributions are, for the sake of convenience, imputed under an assumption of
joint normality. Analyses that depend primarily on means, variances, and covariances,
such as regression or principal-component methods, should perform reasonably well
even though the imputer’s model is rather simplistic. That is, the coverage of the
repeated-imputation intervals will tend to be no worse (and may actually be better)
than those of the same procedure performed on the data without missing values; see,
e.g. the simulation results of Graham and Schafer.!> On the other hand, common-sense
would suggest that the same imputations ought not be used for estimation of fifth or
95th percentiles, or other analyses sensitive to tail behaviour and other non-normal
features.

3 Answers to frequently asked questions

This section addresses some common questions and concerns regarding the use of MI
in practice. Questions of special relevance to producers of public-use databases are
addressed by Rubin.'

Removing incomplete cases is so much easier than multiple imputation; why can’t I just do
that?
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The shortcomings of various case-deletion strategies have been well documented.? If
the discarded cases form a representative and relatively small portion of the entire
dataset, then case deletion may indeed be a reasonable approach. However, case
deletion leads to valid inferences in general only when missing data are missing
completely at random (MCAR) in the sense that the probabilities of response do not
depend on any data values observed or missing.” In other words, case deletion
implicitly assumes that the discarded cases are like a random subsample. When the
discarded cases differ systematically from the rest, estimates may be seriously biased.
Moreover, in multivariate problems, case deletion often results in a large portion of
the data being discarded and an unacceptable loss of power.

Why can’t I just impute once?

Again, if the proportion of missing values is small, then single imputation may be
quite reasonable. Without special corrective measures (e.g. the methods of Schafer and
Schenker!®), single-imputation inference tends to overstate precision because it omits
the between-imputation component of variability. When the rate of missing
information is small (say, less than 5%) then single-imputation inferences for a scalar
estimand may be fairly accurate. For joint inferences about multiple parameters,
however, even small rates of missing information may seriously impair a single-
imputation procedure. In modern computing environments, the effort required to
produce and analyse a multiply-imputed dataset is often not substantially greater than
what is required for good single imputation.

How many imputations do I need?

Rubin? shows that the relative efficiency of an estimate based on m imputations to
one based on an infinite number of them is approximately (1 + A/m) "', where X is the
rate of missing information. With 50% missing information, an estimate based on
m = 5 imputations has a standard deviation that is only about 5% wider than one
based on m = oo because /1 + 0.5/5 = 1.049. Unless rates of missing information are
unusually high, there tends to be little or no practical benefit to using more than five to
ten imputations.

Is multiple imputation like EM?

MI bears a close resemblance to the EM algorithm and other computational
methods for calculating maximum-likelihood estimates based on the observed data
alone. These methods summarize a likelihood function which has been averaged over a
predictive distribution for the missing values. MI performs this same type of averaging
by Monte Carlo rather than by numerical methods. In large samples, when the
imputer’s and analyst’s models agree (i.e. are ‘congenial’ in the sense defined by
Meng!?), inferences obtained by MI with sufficiently large m will be nearly the same as
those obtained by direct maximization of the likelihood. In smaller samples MI
inferences may have better properties, because they are in effect approximating the
observed-data posterior density by a finite mixture of normal densities rather than a
single normal density, improving one’s ability to capture non-normal features such as
skewness or multiple modes.
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Is multiple imputation related to MCMC and other simulation methods?

Markov chain Monte Carlo (MCMC) is a collection of methods for simulating
random draws from nonstandard distributions via Markov chains. MCMC is one of the
primary methods for generating MDI’s in nontrivial problems.* In much of the existing
literature on MCMC - see the chapters of Gilks et al.'” and their references, for
example — MCMC is used for parameter simulation, for creating a large number of
(typically dependent) random draws of parameters from Bayesian posterior distribu-
tions under complicated parametric models. In MI-related applications, however,
MCMC 1is used to create a small number of independent draws of Y, from a
predictive distribution, and these draws are then used for repeated-imputation
inference. In many cases it is possible to conduct an analysis either by parameter
simulation or by multiple imputation. Parameter simulation tends to work well when
interest is confined to small number of well-defined parameters, whereas multiple
imputation is more attractive for exploratory or multipurpose analyses involving a
large number of estimands. Generating and storing m = 10 versions of Y,,; is often
more efficient than generating and storing the hundreds or thousands of dependent
draws that would be required to achieve a comparable degree of precision through
parameter simulation.

What happens when the nonresponse is nonignorable?

Most of the techniques presently available for creating MI’s assume that the
nonresponse is ‘ignorable’ as defined by Rubin.> That is, they assume that missing
data are missing at random (MAR) in the sense that the probability that an
observation is missing may depend on observed values but not missing ones.”? The
MAR assumption is mathematically convenient because it allows one to eschew an
explicit probability model for nonresponse. In some applications, however, MAR may
seem artificial or implausible. With attrition in a longitudinal study, for example, it is
possible that subjects drop out for reasons related to current data values. It is
important to note that the MI paradigm does not require or assume that nonresponse
is ignorable. Imputations may in principle be created under any kind of model for the
missing-data mechanism, and the repeated-imputation method of Section 2 will
produce valid answers under that mechanism. General techniques for creating MI’s
under alternative nonignorable models is an important area for future development.

Isn’t multiple imputation just making up data?

When MI is presented to a new audience, some may view it as a kind of statistical
alchemy in which information is somehow invented or created out of nothing. This
objection is quite valid for single-imputation methods, which treat imputed values no
differently from observed ones. MI, however, is nothing more than a device for
representing missing-data uncertainty. Information is not being invented with MI any
more than with EM or other well accepted likelihood-based methods, which average
over a predictive distribution for Y,; by numerical techniques rather than by
simulation.
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4 Techniques and software

4.1 MI from parametric Bayesian models
Rubin® describes methods for generating MIs by parametric Bayesian models in
relatively simple problems. Despite their simplicity, these examples illustrate the
basic principles of Bayesian imputation and lend insight into methods for more
complicated and realistic problems.
Consider, for example, a univariate sample Y = (yi,...,y,) where the first a values
Yoo = (V1,...,¥,) are seen and the remaining values Yy = Voi1,...,V,) are missing
at random. How does one create multiple imputations under the independent normal
model y; ~ N(pu,v), i =1,...,n when 6 = (u,?) is unknown? Under the standard
noninformative prior P(f) oc 9=, it is straightforward to show that the observed-data
posterior distribution of 6 is

H ’ lb, YDbs ~ N@obsaailw)
b | Yob ~ (@ = 1)S5 /x5

Where Yobs —a_lzl 1 Vis Sobs (a—l) St i jobs) , and Xa , denotes a(/chi-
uare variate with @ — 1 degrees of freedom. To create an 1mputat1on Y. =

(yaH, . ,yﬁl )) one Would generate a random variance () a -1) SA | followed
by a random mean ;9 ~ N5y, a '), and then drawy Gy 1ndepen
dently for i=a+1,...,n. Repeatmg the procedure for = 2 m results in m

proper imputations for Y,m-s.
More generally, suppose that Y = (Y, Yyis) follows a parametric model P(Y | 0)
where 6 has a prior distribution and Y, is ignorably missing. Because

P(Ys | Yons) = / P(Vs | Yo, 0) P(8 | Yop) d6

an imputation for Y,; can be created by first simulating a random draw of the
unknown parameters from their observed-data posterior

0 ~ P(@ ‘ Yobs) (41)

followed by a random draw of the missing values from their conditional predictive
distribution
Yr o~ P(Yuis | Yops, 07) (4.2)

mis

For many common models, (4.2) is straightforward but (4.1) is not. The observed-data
posterior is typically not a standard distribution which can be easily simulated. Rubin?
mentions a few general strategies for approximating draws from (4.1), including large-
sample normal approximations and importance resampling. Soon after his book was
published, however, simpler methods became available through the development of
MCMC.

In MCMC, one creates a Markov chain with a desired stationary distribution.
Overviews of popular MCMC methods, including Gibbs sampling and the Metropolis—
Hastings algorithm, are provided by Gilks et al.!” One MCMC method ideally suited to
missing-data problems is the data augmentation algorithm of Tanner and Wong.'®
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Consider an iterative, two-step process in which we alternately sample missing values
from their conditional predictive distribution Ym[iS ~ P(Ypis | Yope, 0¢°1) and then
sample unknown parameters from a simulated complete-data posterior
00 ~ P(9 | Yobs, mlm) Given an initial value 6, this defines a Markov chain
{(Y,Sl)s,ﬁ ),t =1,2,...} which, under quite general conditions, converges to the
stationary dlStrlbuthl’l P(Yyis,0 | Yois). Executing these steps a large number of times
eventually produces a draw of # from its observed data posterior (4.1) and a draw of
Yonis from P (Y | Yois), the distribution from which MIs are %enerated. In many cases,
the second step of data augmentatlon 60 ~ P(6 | Yo, Y,,;) 1s straightforward. In
more complicated situations, this step is intractable and may be replaced by one or
more cycles of another MCMC algorithm that converges to P(6 | Y, Y,E“)S)

MCMC provides a flexible set of tools for creating MIs from parametric models.
MCMC methods for basic models for continuous, categorical, and mixed multivariate
data are described by Schafer,* along with data examples and practical advice.
Extensions to models with more complicated structure, such as clustering and
repeated measurements, are also available.!” These methods have been implemented
by the author as functions in S-PLUS?’ and are available from http://www.stat.
psu.edu/~jls/misoftwa.html. Some of these functions are incorporated into a
missing-data module scheduled to be released with S-PLUS Version 5 in 1999.

A missing-data module in the current version of SPSS?! performs maximum-
likelihood estimation of means and covariances from an incomplete data matrix. The
module also contains routines for predicted-mean and random imputation of missing
values. By executing the random imputation procedure M times, it is possible to create
multiple draws of the missing data. These multiple imputations are not proper,
however, because the step (4.1) of sampling parameters from their observed-data
posterior distribution is omitted.

4.2 Nonparametric methods

Consider again the univariate sample yi,...,y, where the first a < n values are
observed and the remaining n — a values are missing. Is it possible to generate proper
imputations for Y = (Voi1,...,V,) With minimal distributional assumptions for

Y = (y1,...,v,)? Rubin® describes a simple method called the approximate Bayesian
bootstrap (ABB) in which one creates: (a) a new pool of respondents Y, by sampling a
values from Yy = (v1,...,9,) with replacement and then (b) a set of imputed data
Y by sampling n — a values from Y, , again with replacement. The method, which is
most appropriate for large samples, produces approximate draws from P(Y;s | Yops)
under a multinomial model with categories corresponding to the distinct values seen
in Yy, The resampling of Y}, from Y, approximates a draw of the multinomial
probabilities from their observed-data posterior (4.1) under a Dirichlet prior (see, for
example, chapter 7 of Schafer®).

Now suppose that covariates X = (X1,...,X,) are available for each respondent and
nonrespondent. The ABB can be extended in a variety of ways to incorporate the
additional information provided by X. If the covariates are discrete and the
respondent sample size is sufficiently large, it may be possible to partition the sample
into cells corresponding to unique patterns of (Xj,...,X,) and carry out the ABB
procedure within each cell. With continuous covariates or large p, this strategy tends
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to be ineffective because the observed data become too sparse. Using an idea from
Rosenbaum and Rubin,”® Lavori et al.?® suggest defining response indicators
R = (ry,...,r;), where r; = 1 if unit 7 responded and r; = 0 otherwise, and modelling
the response propensities m; = P(r; = 1) by logistic regression on the covariates X. The
sample may then be partitioned into cells defined by coarse grouping (e.g. quintiles) of
the fitted propensities #; and the ABB procedure performed within each cell. It is
possible to show that this strategy produces valid inferences about quantities
pertaining to the distribution of Y when probabilities of missingness depend on X;
grouping by response propensity effectively eliminates distortions that arise when
respondents and nonrespondents differ in their X-distributions. This approach to MI
has been implemented in a new commercial software product called Solas.?*

It is important to note that the imputations produced by Solas are effective for
analyses pertaining to the distribution of Y, but they are not appropriate in general for
analyses involving relationships between Y and the covariates X. Consider a
hypothetical covariate X; that is highly correlated with the response Y but unrelated
to the missingness indicators R. Imputed values for Y,,; will bear no relationship to Xj
because that variable has no influence in the logistic regression model, and an MI-
based estimate of the correlation between X; and Y will be biased toward zero. The
response-propensity ABB is unable to preserve important features of the joint
distribution of X and Y. Partially parametric strategies for MI which can preserve
these features are discussed by Schenker and Taylor.?

4.3 Software for repeated-imputation inference

The method of repeated-imputation inference for a scalar estimand described in
Section 2 and its multivariate generalization® require only simple arithmetic and
access to quantiles and tail probabilities of Student’s - and F-distributions. The
computations are easily carried out in many statistical software packages. John
Barnard has produced generic routines for repeated-imputation inference in Stata,?°
which are available at http://www.stat.harvard.edu/ barnard/. Functions in-
corporating MI inference are also forthcoming in S-PLUS Version 5.

5 Example

The data in Table 1, previously published by Marascuilo et al.?’ come from the Risk

and Youth: Smoking Project, a school-based anti-smoking intervention programme.
Pupils in the experimental-treatment group received an instructional programme on
tobacco, whereas those in the control group received instructional materials on general
science. Subjects were in the sixth and eighth grades. Pretest and post-test
questionnaires included the statement, “The new low-tar cigarettes aren’t going to
hurt me’, with possible responses ‘I agree’ and ‘I disagree’. Missing values arose at both
occasions, due presumably to absenteeism, failure to complete the questionnaire, etc.

With complete data, changes in a binary response over time are commonly analysed
using McNemar’s test.”® Consider a 2 x 2 table where n subjects are classified by yes/
no answers at two occasions, Y, and Y;. Let x; denote the observed count of subjects
with response pattern (Y; =1, Y, =j) and m; the probability of this pattern for
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Table 1 Responses to ‘The new low-tar cigarettes aren’t going to hurt me’ before (B) and after (4) intervention
by treatment group and grade level

Grade 6 Grade 8

Disagreey Agreey Missinga Disagreey Agreey Missing,
Experimental group
Disagreeg 61 18 4 91 12 9
Agreeg b5 70 14 35 19 3
Missingg 12 20 — 28 9 —
Control group
Disagreeg 69 16 7 100 23 1
Agreeg 13 18 1 26 34
Missingg 24 12 — 37 31 —

Source: Marascuilo et a/.?’

i1=1,2, j=1,2. The null hypothesis of no average change over time, P(Y; =1)
= P(Y, = 1), which is equivalent to the hypothesis of symmetry, mj; = m;, may be
tested against the two-sided alternative by comparing McNemar’ statistic Z? =
(x12 — x21)2/(x12 +x71) to a X% distribution. Changes over time are commonly express-
ed in terms of the difference A = m, — 71, estimated by A = 71, — 7 with standard
error

VI2(A) = \/n (1 — 1) + (1 — ) + 2z

where 7; = x;;/n. With k independent samples, a linear combination or contrast of
differences L = a1A; + - - - + a3\, may be estimated by L = a1A; + - -+ + a4\, with
standard error

VL) = \J@ V(A + - + @ V(A

which is useful for comparing effects across groups.

When some of the subjects have missing responses at time 1 or time 2, the simple
analyses described above are no longer straightforward. A complete-case analysis
which discards the responses of those missing at either occasion results in loss of
power and potential bias. Marascuilo et al.?’ analyse the data in Table 1 using a
technique of Ekbohm?’ which relies a method-of-moments estimate for A. The
Ekbohm technique is easy to carry out with hand-calculator operations, but it requires
that the missing data be missing completely at random, which is the same assumption
that underlies a complete-case analysis. Using software for multiple imputation, one
can easily perform a repeated-imputation analysis which is valid under the less
restrictive assumption of ignorability.

In this example, the complete data may be expressed as a classification of subjects
by four variables: treatment group 7 (E =experimental, C = control), grade G
(6 = sixth, 8 = eighth), response before intervention B (disagree, agree), and response
after intervention A (disagree, agree). Using S-PLUS Version 4 and functions from the
CAT library, it is a simple matter to generate MIs under the general or saturated
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multinomial model for T, G, B, A. The CAT library implements MI for multivariate
categorical data using MCMC techniques described by Schafer* (chapters 7-8). I
created m = 5 imputations by data augmentation runs of 100 cycles each using a
standard noninformative Jeffreys prior. Each run was started at the maximum-
likelihood parameter estimates obtained from an EM algorithm. The entire process,
which consisted of a single run of the function em. cat followed by five runs of da.cat
and imp.cat, took approximately 15s on a 266 MHz Pentium computer. Results of the
imputation procedure are shown in Table 2. The CAT library is available at http://
www.stat.psu.edu/" jls/misoftwa.html.

Let us define A to be the difference in probability of disagreement after versus
before intervention, so that A > 0 is the desired outcome. Repeated-imputation
estimates for A, along with standard errors, degrees of freedom v, and p-values for
testing A = 0 against the two-sided alternative are shown in Table 3 for the four 7' x G
groups. This table also reports the estimated fraction of missing information A for each
estimand as defined in Section 2. The estimated A-effects are positive and highly
significant in the experimental groups but nonsignificant in the control groups,
providing evidence that the experimental treatment was effective. The degrees of
freedom v are all rather large, indicating that the Student’s t-approximation (2.4) is

Table 2 Five imputations of the complete data cross-classified by 7 =treatment group, G = grade,
B = response before intervention, and A = response after intervention

Imputed frequency

T G B A 1 2 3 4 5

E 6 Disagree Disagree 68 72 68 71 71
E 6 Disagree Agree 26 24 25 24 21
E 6 Agree Disagree 74 64 69 66 67
E 6 Agree Agree 86 94 92 93 95
E 8 Disagree Disagree 120 113 120 116 117
E 8 Disagree Agree 16 16 15 16 16
E 8 Agree Disagree 44 50 45 49 48
E 8 Agree Agree 26 27 26 25 25
C 6 Disagree Disagree 98 97 94 94 95
C 6 Disagree Agree 24 22 27 19 23
C 6 Agree Disagree 15 16 17 18 16
C 6 Agree Agree 23 25 22 29 26
C 8 Disagree Disagree 135 140 139 135 136
C 8 Disagree Agree 46 40 39 37 44
C 8 Agree Disagree 32 31 34 37 35
C 8 Agree Agree 49 51 50 53 47

Table 3 Repeated-imputation inferences for A-effects by treatment group and grade

Estimate SE v p A
Ay experimental, grade 6 0.173 0.039 258 0.00 0.13
Ay experimental, grade 8 0.152 0.039 350 0.00 0.1
Ag: control, grade 6 —0.041 0.046 53 0.37 0.30

Ay control, grade 8 —0.028 0.040 43 0.48 0.34
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Table 4 Repeated-imputation inferences for some contrasts of interest

Contrast a ar as as Estimate SE v p A

Experimental (E) vs control (C) 1 1 -1 —1 0.395 0.084 63 0.00 0.28
E vs C, grade 6 1 0 -1 0 0.214 0.063 50 0.00 0.31
E vs C, grade 8 0 1 0 -1 0.181 0.053 252 0.00 0.13
grade 6 vs grade 8 1 -1 1 -1 0.008 0.078 206 092 0.15
grade 6 vs grade 8, E group 1 -1 0 0 0.021 0.058 105 0.72 021
grade 6 vs grade 8, C group 0 0 1 -1 —0.013 0.054 279 0.81 0.13
Treatment group x grade 1 -1 -1 1 0.034 0.080 125 0.67 0.19

essentially a normal one. Note that these degrees of freedom, unlike those in linear
regression and analysis of variance, do not depend on the sample size but on the
number of imputations m and the ratio of between-imputation variance B to within-
imputation variance U.

Inferences for some contrasts L = a1 A1 + ax Ay + azAz + as/\4 of interest are shown
in Table 4. The first three contrasts are highly significant, indicating that the
experimental group performs better than the controls for both grades combined and
for each grade individually. The nonsignificance of the last four contrasts indicate no
evidence of any differences due to grade. These results obtained through MI agree
rather closely with those reported previously.”” Note that because the imputation
model is quite general, the imputations in Table 2 may be used for a variety of other
analyses as well, such as logit modelling of the post-test response.
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